Name:

Date:	

Review: Number Systems, Squares, Cubes & Roots

Period:_____

Number Systems

Real: Rational and Irrational

Rational: Can be expressed as a fraction or ratio, includes fractions, repeating

decimals, terminating decimals, perfect square roots, integers.

Irrational: Non-terminating, non-repeating, includes non-perfect square roots, & π .

Integers: Whole numbers and their opposites, (...-3, -2, -1, 0, 1, 2, 3, 4....).

Whole numbers: Natural (Counting) numbers and zero, (0, 1, 2, 3, 4....).

Natural numbers: (1, 2, 3, 4, ...) "It is very **natural** to begin **counting** with the number 1!" *Identify each of the following as either rational or irrational using* "**R**" or "**I**".

1)	5.2		4) <u>3</u> 5		
2)	.12		5) -√8		
3)	π				
6)) Are all integers whole numbers?				
7)	7) Are all natural numbers rational numbers?				
The sets below contain which type of numbers:					
8)	{2, -1, 0, 1, 2	} _			
9)	{ 1, 2, 3,}	-			
10)	$\{\sqrt{60}, \pi, .10100\}$	1000 , }			

11) Place each of the following numbers in proper order on the number line. Be sure to label the number line appropriately.

12) Order the following numbers from **greatest** to **least**. (*use of number line is optional*)

13) Convert each of the following repeating decimals into a fraction in simplest form.

a) $x = 0.\overline{5}$ b) $x = 0.\overline{18}$

Squares, Cubes and Roots

14)	If $n^2 = 900$, what is a possible value of n?			
	a) 30	b) 300	c) 450	d) 81,000
15)	If $x^3 = 1,000$, what	t is the value of x?		
	a) 10	b) 32	c) 100	d) 333
16)	What is the square	of 9?		
	a) 3	b) 18	c) 81	d) 729
17)	The cube of 6 is:			
	a) 3	b) 18	c) 36	d) 216
18)	Heather has a cube side of the cube.	that has a volume of $V = s^2$	of 512 cubic feet. Fi	nd the length of each
	V= 512 ft ³	S	Length of one sic	le:

19) A square has an area of 169 square inches. What is the length of each side of the square?

20) The formula for the surface area of a cube is $SA = 6s^2$, where s is the length of a side of the cube. What is the length of the side of a cube with a surface area of 1.5 ft²?

21) A circle has an area of $\frac{9}{25}\pi$. What is the length of the radius of the circle?

- 22) A cube has a volume of $\frac{216}{343}$ cubic inches. What is the length of each side of the cube? (leave answer in fractional form.)
- 23) Which of the following expressions has a value of 4?
 - a) $\sqrt{(2^2)}$ b) $\sqrt{(4^2)}$ c) $\sqrt{(8^2)}$ d) $\sqrt{(16^2)}$
- 24) If n = 9, what is the value of the expression below? $(\sqrt{n})(\sqrt{n})(\sqrt{n})(\sqrt{n})$
 - a) 9^4 b) 9^3 c) 9^2 d) 9^1

25) Review: Rounding.

- a) Round to the nearest thousandths: 7.67209
- b) Round to the nearest whole number: 325.825 _____

Exponents

Multiplying Powers	Dividing Powers
Multiply coefficientsWrite (keep) the baseAdd the exponents	 Divide coefficients Write (keep) the base Subtract the exponents
	 Convert negative exponents to positive

Evaluate each power to a single number.

17) 5 ³	18) 12 ⁰	19) 8 ²
•		•

Write each expression using a single *positive* exponent (where applicable).

20)	$\frac{x^4}{x^3}$	21) 4 ⁸ ÷ 4 ²	22) <u>5</u> 5 5 ⁸
23)	$8y^{12} \div 2y^{10}$	24)) 2 × 2 ⁴
25)	a ⁶ x a ⁸	26)) 3 ⁻² x 3 x 3 ⁶
27)	7b ⁶ x 3b	28)) C ⁻⁴

Round each number to the nearest whole number, tenths and hundredths place.

		Whole #	Tenths	Hundredths
29)	8.976			
30)	41.034			

Write using a single positive exponent:

1) $5a^{-4}$ 2) $\frac{3y^6}{18y^{10}}$