Multiplying and Power to Power with Exponents

Exponent Rules

monomial: one term held together by *multiplication*

Examples:

constant: all numbers

Examples:

<u>coefficient:</u> the number in front of the variable

 $8x \quad \frac{1}{2}y \quad -1x \quad -3y$

<u>base:</u>

Properties of Exponents Multiplying

To multiply two powers that have the *same* base, keep the base and add the exponents (multiply coefficients as normal)

....

5

Example:
a)
$$2^{2} \cdot 2^{5} =$$
b) $x^{3} \cdot x^{2} =$
c) $\frac{3}{4}x^{4} \cdot \frac{7}{2}x =$
d) $\left(\frac{1}{2}x^{4}y\right) \cdot \left(\frac{4}{3}x^{6}y^{3}\right)$
e) $(-2)^{3}(-2)(-2)^{2}$
f) $(-3c^{2}d^{2})(5c^{3}d)(-2c^{2})$

9)
$$(3m^2n^5)(-8n^2m)$$

Power to a Power

When raising a power to a power, multiply the exponents (**don't forget coefficients inside need to be raised to that power as well)

Example:
a)
$$(x^2)^3 =$$
b) $(3^5)^2$
c) $(\frac{2}{7}y^4)^2 =$
d) $((-3)^3)^2$
e) $(4x^2y)^3 =$
f) $(5m^4n^3)^3$
g) $(-3x^4)^2 =$
h) $d^2 \bullet (d^3)^4$

i) $(2y^d)^2 =$ j) $(2x^2)^3 (x^2y^3)^4$

k) $(-5x^{d+1})^2 =$

Let's Try a "COMBO" problem 1) $2x^3y^2(3x^3y^4)^2$

$$2) \quad 8ab^6 \left(\frac{1}{2}a^2b^5\right)^3$$

<u>Classwork and Homework:</u>

1. $3x^4 \cdot 5x^2$

- 2. $xk \cdot 4k^6$
- $3.(3x^3)^3$

$4.(5xy^4)^2$

5. $(\frac{4}{3}z^5)^2$

6. $(x^{d+1}y^3)^4$

7. $\frac{1}{2}xy^{4+d} \cdot (20x^{3}y^{d-9})$

8. $7x^{6}a^{2} \cdot (3x^{4}) \cdot (\frac{4}{3}x^{5})$

9.
$$4x^3y^2\left(\frac{1}{2}x^5y^7\right)^3$$

10.
$$-(r^2 s t^3)^2 (s^4 t)^3$$