
[Page 131]

Chapter 4. General Procedures
(This item omitted from WebBook edition)

4.1 Sub Procedures, Part I 132

Variables and Expressions as Arguments

Sub Procedures Calling Other Sub Procedures

4.2 Sub Procedures, Part II 154

Passing by Value

Passing by Reference

Local Variables

Class-Level Variables

Debugging

4.3 Function Procedures 169

User-Defined Functions Having Several Parameters

User-Defined Functions Having No Parameters

Comparing Function Procedures with Sub Procedures

Collapsing a Procedure with a Region Directive

4.4 Modular Design 183

Top-Down Design

Structured Programming

Advantages of Structured Programming

Object-Oriented Programming

A Relevant Quote

Summary 188

Programming Projects 188

Page 1 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 132]

4.1. Sub Procedures, Part I

Visual Basic has two devices, Sub procedures and Function procedures, that are used to break complex
problems into small problems to be solved one at a time. To distinguish them from event procedures,
Sub and Function procedures are referred to as general procedures. General procedures also eliminate
repetitive code and can be reused in other programs.

In this section, we show how Sub procedures are defined and used. The programs in this section are
designed to demonstrate the use of Sub procedures rather than to accomplish sophisticated programming
tasks. Later chapters of the book use them for more substantial programming efforts.

A Sub procedure is a part of a program that performs one or more related tasks, has its own name, and is
written as a separate part of the program. The simplest sort of Sub procedure has the form

Sub ProcedureName()
statement(s)

End Sub

A Sub procedure is invoked with a statement consisting only of the name of the procedure, that is, a
statement of the form

ProcedureName()

Such a statement is said to call the Sub procedure and is referred to as a call statement.

The rules for naming general procedures are identical to the rules for naming variables. The name
chosen for a Sub procedure should describe the task it performs. Sub procedures are typed directly into
the Code window.

Consider the following program that calculates the sum of two numbers. This program will be revised to
incorporate Sub procedures.

Page 2 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Private Sub btnAdd_Click(...) Handles btnAdd.Click
'Display the sum of two numbers
Dim num1, num2 As Double
lstResult.Items.Clear()
lstResult.Items.Add("This program displays a sentence")
lstResult.Items.Add("identifying two numbers and their sum.")
lstResult.Items.Add("")
num1 = 2
num2 = 3

[Page 133]
lstResult.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & num1 + num2 & ".")
End Sub

[Run, and then click the button. The following is displayed in the list box:]

This program displays a sentence
identifying two numbers and their sum.
The sum of 2 and 3 is 5.

The tasks performed by this program can be summarized as follows:

Task #1: Explain purpose of program.

Task #2: Display numbers and their sum.

Sub procedures allow us to write and read a program in such a way that we first focus on the tasks and
later on how to accomplish each task.

Example 1.

Object Property Setting

frmAdd Text Arithmetic

btnAdd Text Add Numbers

lstResult

The following program uses a Sub procedure to accomplish the first task of the preceding
program. When the statement ExplainPurpose() is reached, execution jumps to the Sub
ExplainPurpose() statement. The lines between Sub ExplainPurpose() and End Sub
are executed, and then execution continues with the line following the call statement.

PrivateSub btnAdd_Click(...) Handles btnAdd.Click

Page 3 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Note: When you type Sub ExplainPurpose and then press the Enter key, the editor automatically
inserts the parentheses, the line End Sub, and a blank line separating the two lines of code. Also, the
smart indenting feature of the editor automatically indents all lines in the block of code between the Sub
and End Sub statements.

In Example 1, the btnAdd_Click event procedure is referred to as the calling procedure and the
ExplainPurpose Sub procedure is referred to as the called procedure. The second task performed by the
addition program also can be handled by a Sub procedure. The values of the two numbers, however,
must be transmitted to the Sub procedure. This transmission is called passing.

[Page 134]

Example 2.

'Display the sum of two numbers
Dim num1, num2 As Double
lstResult.Items.Clear()
ExplainPurpose()
lstResult.Items.Add("")
num1 = 2
num2 = 3
lstResult.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & num1 + num2 & ".")
End Sub

Sub ExplainPurpose()
'Explain the task performed by the program
lstResult.Items.Add("This program displays a sentence")
lstResult.Items.Add("identifying two numbers and their sum.")

End Sub

The following revision of the program in Example 1 uses a Sub procedure to accomplish
the second task. The statement DisplaySum(2, 3) causes execution to jump to the Sub
DisplaySum(ByVal num1 As Double, ByVal num2 As Double) statement, which
assigns the number 2 to num1 and the number 3 to num2.

After the lines between Sub DisplaySum(ByVal num1 As Double, ByVal num2 As
Double) and End Sub are executed, execution continues with the line following
DisplaySum(2, 3), namely, the End Sub statement in the event procedure. Note: If you

Page 4 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Sub procedures make a program easy to read, modify, and debug. The event procedure gives a
description of what the program does, and the Sub procedures fill in the details. Another benefit of Sub
procedures is that they can be called several times during the execution of the program. This feature is
especially useful when there are many statements in the Sub procedure.

Example 3.
(This item is displayed on pages 134 - 135 in the print version)

don't type in the word ByVal from the Sub DisplaySum line, the editor will automatically
insert it when you either press the Enter key or move the cursor away from the line. In the
next section, we consider an alternative to the keyword ByVal. For now we needn't be
concerned with ByVal.

Private Sub btnAdd_Click(...) Handles btnAdd.Click
'Display the sum of two numbers
lstResult.Items.Clear()
ExplainPurpose()
lstResult.Items.Add("")
DisplaySum(2, 3)

End Sub

Sub DisplaySum(ByVal num1 As Double, ByVal num2 As Double)
'Display numbers and their sum
lstResult.Items.Add("The sum of " & num1 & " and " _

& num2 & " is " & (num1 + num2) & ".")
End Sub

Sub ExplainPurpose()
'Explain the task performed by the program
lstResult.Items.Add("This program displays a sentence")
lstResult.Items.Add("identifying two numbers and their sum.")

End Sub

The following extension of the program in Example 2 displays several sums:

Private Sub btnAdd_Click(...) Handles btnAdd.Click
'Display the sum of two numbers
lstResult.Items.Clear()

[Page 135]
ExplainPurpose()
lstResult.Items.Add("")
DisplaySum(2, 3)
DisplaySum(4, 6)
DisplaySum(7, 8)

End Sub

Sub DisplaySum(ByVal num1 As Double, ByVal num2 As Double)

Page 5 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

The variables num1 and num2 appearing in the Sub procedure DisplaySum are called parameters. They
are merely temporary place holders for the numbers passed to the Sub procedure; their names are not
important. The only essentials are their type, quantity, and order. In this DisplaySum Sub procedure, the
parameters must be numeric variables of type Double and there must be two of them. For instance, the
Sub procedure could have been written

Sub DisplaySum(ByVal this As Double, ByVal that As Double)
'Display numbers and their sum
lstResult.Items.Add("The sum of " & this & " and " _

 & that & " is " & this + that & ".")
End Sub

When a parameter is defined in a Sub procedure, it is automatically available to the code between the
Sub and End Sub lines. That is, the code "this As Double" that defines a parameter behaves similarly to
the "Dim this As Double" code that defines a variable. A string also can be passed to a Sub procedure. In
this case, the receiving parameter in the Sub procedure must be followed by the type declaration "As
String".

Example 4.
(This item is displayed on pages 135 - 136 in the print version)

'Display numbers and their sum
lstResult.Items.Add("The sum of " & num1 & " and "_

& num2 & " is " & num1 + num2 & ".")
End Sub

Sub ExplainPurpose()
'Explain the task performed by the program
lstResult.Items.Add("This program displays a sentence")
lstResult.Items.Add("identifying two numbers and their sum.")

End Sub

[Run, and then click the button. The following is displayed in the list box.]

This program displays sentences
identifying pairs of numbers and their sums.
The sum of 2 and 3 is 5.
The sum of 4 and 6 is 10.
The sum of 7 and 8 is 15.

The following program passes a string and two numbers to a Sub procedure. When the Sub
procedure is first called, the string parameter state is assigned the value "Hawaii", and the
numeric parameters pop and area are assigned the values 1257608 and 6471, respectively.
The Sub procedure then uses these parameters to carry out the task of calculating the
population density of Hawaii. The second call statement assigns different values to the

Page 6 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

parameters.

[Page 136]

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Calculate the population densities of states

 lstDensity.Items.Clear()
 CalculateDensity("Hawaii", 1257608, 6471)
 lstDensity.Items.Add("")
 CalculateDensity("Alaska", 648818, 591000)
End Sub

Sub CalculateDensity(ByVal state As String, _
ByVal pop As Double, ByVal area As Double)

Dim rawDensity, density As Double
'The density (number of people per square mile)
'will be displayed rounded one decimal place

 rawDensity = pop / area
 density = Math.Round(rawDensity, 1) 'Round to one decimal place
 lstDensity.Items.Add("The density of " & state & " is " & density)
 lstDensity.Items.Add("people per square mile.")
End Sub

[Run, and then click the button. The following is displayed in the list box.]

The density of Hawaii is 194.3
people per square mile.
The density of Alaska is 1.1
people per square mile.

Object Property Setting

frmDensities Text 4-1-4

btnDisplay Text Display
Demographics

lstDensity

Page 7 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

The parameters in the density program can have any valid variable names, as with the parameters in the
addition program of Example 3. The only restriction is that the first parameter be a string variable and
that the last two parameters have type Double. For instance, the Sub procedure could have been written

Sub CalculateDensity(ByVal x As String, _
ByVal y As Double, ByVal z As Double)

'The density (number of people per square mile)
'will be displayed rounded to a whole number

[Page 137]
Dim rawDensity, density As Double

 rawDensity = y / z
 density = Math.Round(rawDensity, 1) 'Round to one decimal place
 lstDensity.Items.Add("The density of " & x & " is " & density)
 lstDensity.Items.Add("people per square mile.")
End Sub

When nondescriptive names are used for parameters, the Sub procedure should contain comments giving
the meanings of the variables. Possible comments for the preceding program are

'x name of the state
'y population of the state
'z area of the state

Variables and Expressions as Arguments

The items appearing in the parentheses of a call statement are called arguments. These should not be
confused with parameters, which appear in the header of a Sub procedure. Each parameter defined for a
Sub procedure corresponds to an argument passed in a call statement for that procedure. In Example 3,
the arguments of the DisplaySum statements were literals. These arguments also could have been
variables or expressions. For instance, the event procedure could have been written as follows. See
Figure 4.1.

Figure 4.1. Passing arguments to parameters.

[View full size image]

Private Sub btnAdd_Click(...) Handles btnAdd.Click
'Display the sum of two numbers

Page 8 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Dim x, y As Double
lstResult.Items.Clear()

 ExplainPurpose()
 lstResult.Items.Add("")
x = 2

 y = 3
 DisplaySum(x, y)
 DisplaySum(x + 2, 2 * y)
 z = 7
 DisplaySum(z, z + 1)
End Sub

This feature allows values obtained as input from the user to be passed to a Sub procedure.

[Page 138]

Example 5.

The following variation of the addition program requests the two numbers as input from the
user. Notice that the names of the arguments, x, and y, are different from the names of the
parameters. The names of the arguments and parameters may be the same or different; what
matters is that the order, number, and types of the arguments and parameters match.

Object Property Setting

frmAdd Text Add Two
Numbers

lblFirstNum Text First Number:

txtFirstNum

lblSecondNum Text Second Number:

txtSecondNum

btnCompute Text Compute Sum

txtResult ReadOnly True

Page 9 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Example 6.
(This item is displayed on pages 138 - 140 in the print version)

Private Sub btnCompute_Click(...) Handles btnCompute.Click
'This program requests two numbers and
'displays the two numbers and their sum.
Dim x, y As Double

 x = CDbl(txtFirstNum.Text)
 y = CDbl(txtSecondNum.Text)
 DisplaySum(x, y)
End Sub

Sub DisplaySum(ByVal num1 As Double, ByVal num2 As Double)
'Display numbers and their sum

 txtResult.Text = "The sum of " & num1 & " and " & num2 _
 & " is " & (num1 + num2) & "."
End Sub

[Run, type 23 and 67 into the text boxes, and then click the button.]

The following variation of Example 4 obtains its input from the file
DEMOGRAPHICS.TXT. The second call statement uses different variable names for the
arguments to show that using the same argument names is not necessary. See Figure 4.2.

[Page 139]

Figure 4.2. Passing arguments to parameters in Example 6.

Page 10 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

DEMOGRAPHICS.TXT contains the following lines:

Hawaii

1257608

6471

Alaska

648818

591000

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Calculate the population densities of states
Dim state As String, pop, area As Double
Dim s As String, p, a As Double
Dim sr As IO.StreamReader = IO.File.OpenText("DEMOGRAPHICS.TXT")

 lstDensity.Items.Clear()
 state = sr.ReadLine
 pop = CDbl(sr.ReadLine)
 area = CDbl(sr.ReadLine)
 CalculateDensity(state, pop, area)
 lstDensity.Items.Add("")
 s = sr.ReadLine
 p = CDbl(sr.ReadLine)
 a = CDbl(sr.ReadLine)
 sr.Close()
 CalculateDensity(s, p, a)
End Sub

Sub CalculateDensity(ByVal state As String, _
ByVal pop As Double, ByVal area As Double)

'The density (number of people per square mile)
'will be displayed rounded to one decimal place
Dim rawDensity, density As Double
rawDensity = pop / area

 density = Math.Round(rawDensity, 1) 'Round to one decimal place
 lstDensity.Items.Add("The density of " & state & " is " & density)
 lstDensity.Items.Add("people per square mile.")

Page 11 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Sub Procedures Calling Other Sub Procedures

A Sub procedure can call another Sub procedure. If so, after the End Sub of the called Sub procedure is
reached, execution continues with the line in the calling Sub procedure that follows the call statement.

Example 7.

End Sub

[Page 140]

[Run, and then click the button. The following is displayed in the list box.]

The density of Hawaii is 194.3
people per square mile.
The density of Alaska is 1.1
people per square mile.

In the following program, the Sub procedure FirstPart calls the Sub procedure SecondPart.
After the statements in SecondPart are executed, execution continues with the remaining
statements in the Sub procedure FirstPart before returning to the event procedure. The form
contains a button and a list box.

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Demonstrate Sub procedure calling other Sub procedures

 FirstPart()
 lstOutput.Items.Add(4)
End Sub

Sub FirstPart()
 lstOutput.Items.Add(1)
 SecondPart()
 lstOutput.Items.Add(3)
End Sub

Sub SecondPart()
 lstOutput.Items.Add(2)
End Sub

[Run, and click the button. The following is displayed in the list box.]

1
2
3

Page 12 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Arguments and parameters also can be used to pass values from Sub procedures back to event
procedures or other Sub procedures. This important property is explored in detail in the next section.

Comments

1. Sub procedures allow programmers to focus on the main flow of a complex task and defer the
details of implementation. Modern programs use them liberally. This method of program
construction is known as modular or top-down design. As a rule, a Sub procedure should perform
only one task, or several closely related tasks, and should be kept relatively small.

[Page 141]
2. In this text, Sub procedure names begin with uppercase letters in order to distinguish them from

variable names. Like variable names, however, they can be written with any combination of
upper- and lowercase letters. Note: Parameters appearing in a Sub statement are not part of the
Sub procedure name.

3. The first line inside a Sub procedure is often a comment statement describing the task performed
by the Sub procedure. If necessary, several comment statements are devoted to this purpose.
Conventional programming practice also recommends that all variables used by the Sub procedure
be listed in comment statements with their meanings. In this text, we give several examples of this
practice, but adhere to it only when the variables are especially numerous or lack descriptive
names.

4. After a Sub procedure has been defined, Visual Basic automatically reminds you of the Sub
procedure's parameters when you type in a call statement. As soon as you type in the left
parenthesis of a call statement, a Parameter Info banner appears giving the names and types of the
parameters. See Figure 4.3.

Figure 4.3. The Parameter Info help feature.

[View full size image]

4

Page 13 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Practice Problems 4.1

[Page 142]

Exercises 4.1

In Exercises 1 through 34, determine the output displayed when the button is clicked

1. What is the difference between an event procedure and a Sub procedure?

2. What is wrong with the following code?

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim phone As String
phone = mtxtPhoneNum.Text
AreaCode(phone)

End Sub

Sub AreaCode()
txtOutput.Text = "Your area code is " & phone.Substring(1, 3)

End Sub

1. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Quote from Kermit
Quotation()
lstOutput.Items.Add ("Kermit the frog")

End Sub

Sub Quotation()
'Display a quotation

Page 14 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

lstOutput.Items.Add("Time's fun when you're having flies.")
End Sub

2. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
lstOutput.Items.Add("Today")
WhatDay()
lstOutput.Items.Add("of the rest of your life.")

End Sub

Sub WhatDay()
lstOutput.Items.Add("is the first day")

End Sub

3. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Question()
Answer()

End Sub

Sub Answer()
lstOutput.Items.Add("Since they were invented in the northern")
lstOutput.Items.Add("hemisphere where sundials go clockwise.")

End Sub

Sub Question()
lstOutput.Items.Add("Why do clocks run clockwise?")
lstOutput.Items.Add("")

End Sub

4. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
FirstName()
lstOutput.Items.Add("How are you today?")

End Sub

Sub FirstName()
Dim name As String
name = InputBox("What is your first name?", "Name")
lstOutput.Items.Add("Hello "& name.ToUpper)

End Sub

(Assume that the response is George.)

[Page 143]

5. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'The fates of Henry the Eighth's six wives
CommonFates()
lstOutput.Items.Add("died,")

Page 15 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

CommonFates()
lstOutput.Items.Add("survived")

End Sub

Sub CommonFates()
'The most common fates
lstOutput.Items.Add("divorced")
lstOutput.Items.Add("beheaded")

End Sub

6. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
lstOutput.Items.Add("a rose")
Rose()
Rose()

End Sub

Sub Rose()
lstOutput.Items.Add("is a rose")

End Sub

7. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Good advice to follow
Advice()

End Sub

Sub Advice()
lstOutput.Items.Add("Keep cool, but don't freeze.")
Source()

End Sub

Sub Source()
lstOutput.Items.Add("Source: A jar of mayonnaise.")

End Sub

8. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Answer()
Question()

End Sub

Sub Answer()
lstOutput.Items.Add("The answer is 9W.")
lstOutput.Items.Add("What is the question?")

End Sub

Sub Question()
'Note: "Wagner"is pronounced "Vagner"
lstOutput.Items.Add("Do you spell your name with a V,")
lstOutput.Items.Add("Mr. Wagner?")

End Sub

Page 16 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 144]

9. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Piano(88)

End Sub

Sub Piano(ByVal num As Integer)
txtOutput.Text = num & " keys on a piano"

End Sub

10. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Opening line of Moby Dick
FirstLine("Ishmael")

End Sub

Sub FirstLine(ByVal name As String)
'Display first line
txtOutput.Text = "Call me "& name & "."

End Sub

11. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Beginning of Tale of Two Cities
Times("best")
Times("worst")

End Sub

Sub Times(ByVal word As String)
'Display sentence
lstOutput.Items.Add("It was the "& word & " of times.")

End Sub

12. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Potato(1)
Potato(2)
Potato(3)
lstOutput.Items.Add(4)

End Sub

Sub Potato(ByVal quantity As Integer)
lstOutput.Items.Add(quantity & " potato")

End Sub

13. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Analyze a name

Page 17 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Dim name As String = "Gabriel"
AnalyzeName(name)

End Sub

Sub AnalyzeName(ByVal name As String)
'Display length and first letter
lstBox.Items.Add("Your name has "& name.Length & " letters.")
lstBox.Items.Add("The first letter is "& name.Substring(0, 1))

End Sub

[Page 145]

14. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim color As String
color = InputBox("What is your favorite color?")
Flattery(color)

End Sub

Sub Flattery(ByVal color As String)
txtOutput.Text = "You look dashing in "& color & "."

End Sub

(Assume that the response is blue.)

15. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim num As Integer
num = CInt(InputBox("Give a number from 1 to 26."))
Alphabet(num)

End Sub

Sub Alphabet(ByVal num As Integer)
txtOutput.Text = "abcdefghijklmnopqrstuvwxyz".Substring(0, num)

End Sub

(Assume that the response is 5.)

16. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim size As Double
size = 435
House(size)
lstOutput.Items.Add("of Representatives")

End Sub

Sub House(ByVal size As Double)
lstOutput.Items.Add(size & " members in the House")

End Sub

17. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

Page 18 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Dim num As Double
num = 144
Gross(num)

End Sub

Sub Gross(ByVal amount As Double)
txtOutput.Text = amount & " items in a gross"

End Sub

18. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim a As String = "mile"
Acres(a)

End Sub

Sub Acres(ByVal length As String)
txtOutput.Text = "640 acres in a square "& length

End Sub

[Page 146]

19. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim candy As String
candy = "M&M's Plain Chocolate Candies"
Brown(candy)

End Sub

Sub Brown(ByVal item As String)
txtOutput.Text = "30% of "& item & " are brown."

End Sub

20. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim annualRate As Double = 0.08
Balance(annualRate)

End Sub

Sub Balance(ByVal r As Double)
Dim p As Double
p = CDbl(InputBox("What is the principal?"))
txtOutput.Text = "The balance after 1 year is "& (1 + r) * p

End Sub

(Assume that the response is 100.)

21. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim hours As Double
hours = 24
Minutes(60 * hours)

Page 19 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

End Sub

Sub Minutes(ByVal num As Double)
txtOutput.Text = num & " minutes in a day"

End Sub

22. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim a, b As String
a = "United States"
b = "acorn"
Display(a.Substring(0, 3) & b.Substring(1, 4))

End Sub

Sub Display(ByVal word As String)
txtOutput.Text = word

End Sub

23. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word As String
word = InputBox("Enter a word.")
T(word.IndexOf("t"))

End Sub

Sub T(ByVal num As Integer)
txtBox.Text = "t is the "& (num + 1) & "th letter of the word."

End Sub

(Assume that the response is computer.)

[Page 147]

24. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim states, senators As Double
states = 50
senators = 2
Senate(states * senators)

End Sub

Sub Senate(ByVal num As Double)
txtBox.Text = "The number of U.S. Senators is "& num

End Sub

25. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
DisplaySource()
Database("Sybase SQL Server", 75633)
Database("Oracle", 73607)
Database("Windows CE", 73375)

Page 20 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Database("Microsoft SQL Server", 68295)
End Sub

Sub DisplaySource()
lstOutput.Items.Add("A recent salary survey of readers of")
lstOutput.Items.Add("Visual Basic Programmer's Journal gave")
lstOutput.Items.Add("average salaries of database developers")
lstOutput.Items.Add("according to the database used.")
lstOutput.Items.Add("")

End Sub

Sub Database(ByVal db As String, ByVal salary As Double)
lstOutput.Items.Add(db & " programmers earned "& _

FormatCurrency(salary, 0) & ".")
End Sub

26. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Sentence using number, thing, and place
Sentence(168, "hour", "a week")
Sentence(76, "trombone", "the big parade")

End Sub

Sub Sentence(ByVal num As Double, ByVal thing As String, _
ByVal where As String)

lstOutput.Items.Add(num & " "& thing & "s in "& where)
End Sub

27. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim pres, college As String
Dim sr As IO.StreamReader = IO.File.OpenText("CHIEF.TXT")
pres = sr.ReadLine
college = sr.ReadLine
PresAlmaMater(pres, college)
pres = sr.ReadLine
college = sr.ReadLine

[Page 148]
 PresAlmaMater(pres, college)
sr.Close()

End Sub

Sub PresAlmaMater(ByVal pres As String, ByVal college As String)
lstBox.Items.Add("President "& pres & " is a graduate of "_

& college & ".")
End Sub

(Assume that the four lines of the file CHIEF.TXT contain the following data: Clinton,
Georgetown University, Bush, Yale University.)

28. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim name As String, yob As Integer

Page 21 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

name = InputBox("Name?")
yob = CInt(InputBox("Year of birth?"))
AgeIn2010(name, yob)

End Sub

Sub AgeIn2010(ByVal name As String, ByVal yob As Integer)
txtBox.Text = name & ", in the year 2010 your age will be "_

& (2010 yob) & "."
End Sub

(Assume that the responses are Gabriel and 1980.)

29. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word As String, num As Integer
word = "Visual Basic"
num = 6
FirstPart(word, num)

End Sub

Sub FirstPart(ByVal term As String, ByVal digit As Integer)
txtOutput.Text = "The first "& digit & " letters are "_

& term.Substring(0, digit) & "."
End Sub

30. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim statue As String, tons As Double
statue = "The Statue of Liberty"
tons = 250
HowHeavy(statue, tons)

End Sub

Sub HowHeavy(ByVal what As String, ByVal weight As Double)
txtOutput.Text = what & " weighs "& weight & " tons."

End Sub

31. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word As String
word = "worldly"
Negative("un" & word, word)

End Sub

[Page 149]
Sub Negative(ByVal neg As String, ByVal word As String)
txtOutput.Text = "The negative of " & word & " is " & neg

End Sub

32. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim age, yrs As Integer, major As String

Page 22 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 150]

In Exercises 35 through 38, find the errors.

age = CInt(InputBox("How old are you?"))
yrs = CInt(InputBox("In how many years will you graduate?"))
major = InputBox("What sort of major do you have "& _

"(Arts or Sciences)?")
Graduation(age + yrs, major.Substring(0, 1))

End Sub

Sub Graduation(ByVal num As Integer, ByVal letter As String)
txtOutput.Text = "You will receive a B"& letter.ToUpper & _

" degree at age "& num
End Sub

(Assume that the responses are 19, 3, and arts.)

33. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
HowMany(24)
lstOutput.Items.Add("a pie.")

End Sub

Sub HowMany(ByVal num As Integer)
What(num)
lstOutput.Items.Add("baked in")

End Sub

Sub What(ByVal num As Integer)
lstOutput.Items.Add(num & " blackbirds")

End Sub

34. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
txtOutput.Text = "All's"
PrintWell()
PrintWords(" that ends")
PrintWell()
txtOutput.Text &= "."

End Sub

Sub PrintWell()
txtOutput.Text &= " well"

End Sub

Sub PrintWords(ByVal words As String)
txtOutput.Text &= words

End Sub

Page 23 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

35. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim n As Integer = 5
Alphabet()

End Sub

Sub Alphabet(ByVal n As Integer)
txtOutput.Text = "abcdefghijklmnopqrstuvwxyz".Substring(0, n)

End Sub

36. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word As String, number As Double
word = "seven"
number = 7
Display(word, number)

End Sub

Sub Display(ByVal num As Double, ByVal term As String)
txtOutput.Text = num & " "& term

End Sub

37. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim name As String
name = InputBox("Name")
Handles(name)

End Sub

Sub Handles(ByVal moniker As String)
txtOutput.Text = "Your name is "& moniker

End Sub

38. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim num As Integer = 2
Tea(num)

End Sub

Sub Tea()
txtOutput.Text = "Tea for "& num

End Sub

In Exercises 39 through 42, rewrite the program with the output performed by a call to a
Sub procedure.

39. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Display a lucky number
Dim num As Integer = 7
txtOutput.Text = num & " is a lucky number."

End Sub

Page 24 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

40. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Greet a friend
Dim name As String = "Jack"
txtOutput.Text = "Hi, "& name

End Sub

[Page 151]

41. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Information about trees
Dim tree As String, ht As Double
Dim sr As IO.StreamReader = IO.File.OpenText("TREES.TXT")
lstBox.Items.Clear()
tree = sr.ReadLine
ht = CDbl(sr.ReadLine)
lstBox.Items.Add("The tallest "& tree & " in the U.S. is "_

& ht & " feet.")
tree = sr.ReadLine
ht = CDbl(sr.ReadLine)
lstBox.Items.Add("The tallest "& tree & " in the U.S. is "_

& ht & " feet.")
sr.Close()

End Sub

(Assume that the four lines of the file TREES.TXT contain the following data: redwood,
362, pine, 223.)

42. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim city As String, salary As Double
Dim sr As IO.StreamReader = IO.File.OpenText("DATA.TXT")
lstBox.Items.Clear()
city = sr.ReadLine
salary = CDbl(sr.ReadLine)
lstBox.Items.Add("In 2000, the average salary for "& city & _

" residents was "& FormatCurrency(salary, 0))
city = sr.ReadLine
salary = CDbl(sr.ReadLine)
lstBox.Items.Add("In 2000, the average salary for "& city & _

" residents was "& FormatCurrency(salary, 0))
sr.Close()

End Sub

(Assume that the four lines of the file DATA.TXT contain the following data: San Jose,
76076, Hartford, 42349.) Note: San Jose is located in Silicon Valley, and Hartford is the
center of the insurance industry.

43. Write a program that requests a number as input and displays three times the number.
The output should be produced by a call to a Sub procedure named Triple.

Page 25 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 152]

In Exercises 47 through 50, write a program that, when btnDisplay is clicked, will display in lstOutput
the output shown. The last two lines of the output should be displayed by one or more Sub procedures
using data passed by variables from an event procedure.

44. Write a program that requests a word as input and displays the word followed by the
number of letters in the word. The output should be produced by a call to a Sub
procedure named HowLong.

45. Write a program that requests a word of at most ten letters and a width from 10 through
20 as input and displays the word right-justified in a zone having the specified width. The
output should be produced by a call to a Sub procedure named PlaceNShow.

46. Write a program that requests three numbers as input and displays the average of the
three numbers. The output should be produced by a call to a Sub procedure named
Average.

47. (Assume that the following is displayed.)

According to a 2004 survey of college freshmen
taken by the Higher Educational Research Institute:

16 percent said they intend to major in business.
1.4 percent said they intend to major in computer science.

48. (Assume that the current date is 12/31/2006, the label for txtBox reads "What is your
year of birth?", and the user types 1980 into txtBox before btnDisplay is clicked.)

You are now 26 years old.
You have lived for more than 9490 days.

49. (Assume that the label for txtBox reads "What is your favorite number?", and the user
types 7 into txtBox before btnDisplay is clicked.)

The sum of your favorite number with itself is 14.
The product of your favorite number with itself is 49.

50. (Assume that the following is displayed.)

In a recent year,
657 thousand college students took a course in Spanish

Page 26 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

199 thousand college students took a course in French

51. Write a program to display three verses of "Old McDonald Had a Farm." The primary
verse, with variables substituted for the animals and sounds, should be contained in a Sub
procedure. The program should use the file FARM.TXT. The eight lines of the file
FARM.TXT contain the following data: lamb, baa, firefly, blink, computer, beep.

The first verse of the output should be

Old McDonald had a farm. Eyi eyi oh.
And on his farm he had a lamb. Eyi eyi oh.
With a baa baa here, and a baa baa there.
Here a baa, there a baa, everywhere a baa baa.
Old McDonald had a farm. Eyi eyi oh.

52. Write a program that displays the word WOW vertically in large letters. Each letter
should be drawn in a Sub procedure. For instance, the Sub procedure for the letter W
follows. Hint: Use the font Courier New in the list box.

Sub DrawW()
'Draw the letter W
lstWOW.Items.Add("** **")
lstWOW.Items.Add(" ** **")
lstWOW.Items.Add(" ** ** **")
lstWOW.Items.Add(" ** **")
lstWow.Items.Add("")

End Sub

[Page 153]

53. Write a program to display the data from Table 4.1. The occupations and numbers of jobs
for 2000 and 2012 should be contained in the file GROWTH.TXT. A Sub procedure, to
be called four times, should read the first three pieces of data for an occupation, calculate
the percent increase from 2000 to 2012, and display the four items. Note: The percent
increase is calculated as (2012 value 2000 value)/(2000 value).

Table 4.1. Occupations projected to experience the largest job growth, 20002012
(numbers in thousands of jobs).

Occupation 2000 2012 Increase

Medical assistant 365 579 59%

Home health aide 580 859 48%

Software engineer 394 573 45%

Page 27 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Solutions to Practice Problems 4.1

Source: U.S. Department of Labor.

Systems analyst 468 653 40%

54. Write a program to compute tips for services rendered. The program should request the
person's occupation, the amount of the bill, and the percentage tip as input and pass this
information to a Sub procedure to display the person and the tip. A sample run is shown
in the following figure:

1. An event procedure always has the two parameters sender and e and ends with a phrase
of the form "Handles object.event." It is triggered when the specified object experiences
the specified event. On the other hand, a Sub procedure is triggered by a line of code
containing the name of the Sub procedure.

2. The statement Sub AreaCode() must be replaced by Sub AreaCode(ByVal phone As
String). Whenever a value is passed to a Sub procedure, the Sub statement must
provide a parameter to receive the value.

[Page 154]

4.2. Sub Procedures, Part II

The previous section introduced the concept of a Sub procedure, but left some questions unanswered.
Why can't the value of a variable be passed from an event procedure to a Sub procedure by just using the
variable in the Sub procedure? How do Sub procedures pass values back to an event procedure? The
answers to these questions provide a deeper understanding of the workings of Sub procedures and reveal
their full capabilities.

Page 28 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Passing by Value

In Section 4.1, all parameters appearing in Sub procedures were preceded by the word ByVal, which
stands for "By Value." When a variable is passed to such a parameter, we say that the variable is "passed
by value." A variable that is passed by value will retain its original value after the Sub procedure
terminatesregardless of what was done to the corresponding parameter inside the Sub procedure.
Example 1 illustrates this feature.

Example 1.

When a variable is passed by value, two memory locations are involved. At the time the Sub procedure
is called, a temporary second memory location for the parameter is set aside for the Sub procedure's use
and the value of the argument is copied into that location. After the completion of the Sub procedure, the
temporary memory location is released, and the value in it is lost. So, for instance, the outcome in
Example 1 would be the same even if the name of the parameter were amt.

[Page 155]

Passing by Reference

The following program illustrates the fact that changes to the value of a parameter passed
by value have no effect on the value of the calling argument:

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Illustrate that a change in value of parameter does not alter the
'value of the argument
Dim amt As Double = 2
lstResults.Items.Add(amt)

 Triple(amt)
 lstResults.Items.Add(amt)
End Sub
Sub Triple(ByVal num As Double)
'Triple a number
lstResults.Items.Add(num)

 num = 3 * num
 lstResults.Items.Add(num)
End Sub

[Run, and then click the button. The following is displayed in the list box.]

2
2
6
2

Page 29 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Another way to pass a variable to a Sub procedure is "By Reference." In this case the parameter is
preceded by the reserved word ByRef. Suppose a variable, call it arg, appears as an argument in a call
statement, and its corresponding parameter in the Sub procedure's header, call it par, is preceded by
ByRef. After the Sub procedure is executed, arg will have whatever value par had in the Sub procedure.
Hence, not only is the value of arg passed to par, but the value of par is passed back to arg.

In Example 1, if the first line of the Sub procedure is changed to

Sub Triple(ByRef num As Double)

then the last number of the output will be 6.

Although this feature may be surprising at first glance, it provides a vehicle for passing values from a
Sub procedure back to the place from which the Sub procedure was called. Different names may be used
for an argument and its corresponding parameter, but only one memory location is involved. Initially,
the btnDisplay_Click() event procedure allocates a memory location to hold the value of amt (Figure 4.4
(a)). When the Sub procedure is called, the parameter num becomes the Sub procedure's name for this
memory location (Figure 4.4(b)). When the value of num is tripled, the value in the memory location
becomes 6 (Figure 4.4(c)). After the completion of the Sub procedure, the parameter name num is
forgotten; however, its value lives on in amt (Figure 4.4(d)). The variable amt is said to be passed by
reference.

Figure 4.4. Passing a variable by reference to a Sub procedure.

Passing by reference has a wide variety of uses. In the next example, it is used as a vehicle to transport a
value from a Sub procedure back to an event procedure.

Example 2.
(This item is displayed on pages 155 - 156 in the print version)

The following variation of Example 5 from the previous section uses a Sub procedure to
acquire the input. The variables x and y are not assigned values prior to the execution of the
first call statement. Therefore, before the call statement is executed, they have the value 0.
After the call statement is executed, however, they have the values entered into the text
boxes. These values then are passed by the second call statement to the Sub procedure
DisplaySum.

Page 30 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 156]

Private Sub btnCompute_Click(...) Handles btnCompute.Click
'This program requests two numbers and
'displays the two numbers and their sum.
Dim x, y As Double

 GetNumbers(x, y)
 DisplaySum(x, y)
End Sub
Sub GetNumbers(ByRef x As Double, ByRef y As Double)
'Record the two numbers in the text boxes

 x = CDbl(txtFirstNum.Text)
 y = CDbl(txtSecondNum.Text)
End Sub
Sub DisplaySum(ByVal num1 As Double, ByVal num2 As Double)
'Display numbers and their sum

 txtResult.Text = "The sum of " & num1 & " and " & num2 _
 & " is " & (num1 + num2) & "."
End Sub

[Run, type 2 and 3 into the text boxes, and then click the button.]

Object Property Setting

frmAdd Text Add Two
Numbers

lblFirstNum Text First Number:

txtFirstNum

lblSecondNum Text Second Number:

txtSecondNum

btnCompute Text Compute Sum

txtResult ReadOnly True

Page 31 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

In most situations, a variable with no preassigned value is used as an argument of a call statement for the
sole purpose of carrying back a value from the Sub procedure.

Example 3.
(This item is displayed on pages 156 - 157 in the print version)

The following variation of Example 2 allows the btnCompute_Click event procedure to be
written in the input-process-output style. Just before the call statement CalculateSum (x,
y, t) is executed, the value of t is 0. After the call, the value of t will be the sum of the two
numbers in the text boxes.

[Page 157]

Private Sub btnCompute_Click(...) Handles btnCompute.Click
'This program requests two numbers and
'displays the two numbers and their sum.
Dim x As Double 'First number
Dim y As Double 'Second number
Dim t As Double 'Total
GetNumbers(x, y)

 CalculateSum(x, y, t)
 DisplayResult(x, y, t)
End Sub
Sub GetNumbers(ByRef num1 As Double, ByRef num2 As Double)
'Retrieve the two numbers in the text boxes

 num1 = CDbl(txtFirstNum.Text)
 num2 = CDbl(txtSecondNum.Text)
End Sub
Sub CalculateSum(ByVal num1 As Double, ByVal num2 As Double, _

ByRef total As Double)
'Add the values of num1 and num2

 total = num1 + num2
End Sub
Sub DisplayResult(ByVal num1 As Double, ByVal num2 As Double, _

ByVal total As Double)
 txtResult.Text = "The sum of " & num1 & " and " & num2 _
 & " is " & total & "."
End Sub

Page 32 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Visual Basic provides a way to override passing by reference, even if the ByRef keyword precedes the
parameter. If you enclose the variable in the call statement in an extra pair of parentheses, then the
variable will be passed by value.

For instance, in Example 1, if you change the call statement to

Triple((amt))

then the fourth number of the output will be 2 even if the parameter num is preceded with ByRef.

Local Variables

When a variable is declared in an event or Sub procedure with a Dim statement, a portion of memory is
set aside to hold the value of the variable. As soon as the End Sub statement for the procedure executes,
the memory location is freed up; that is, the variable ceases to exist. The variable is said to be local to
the procedure.

When variables of the same name are declared with Dim statements in two different procedures (either
event or Sub), Visual Basic gives the variables separate identities and treats them as two different
variables. A value assigned to a variable in one part of the program will not affect the value of the like-
named variable in the other part of the program.

[Page 158]

Example 4.

The following program illustrates the fact that each time a Sub procedure is called, its
variables are set to their initial values; that is, numerical variables are set to 0 and string
variables are set to the keyword Nothing.

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Demonstrate that variables declared in a Sub procedure
'do not retain their values in subsequent calls

 Three()
 Three()
End Sub
Sub Three()
'Display the value of num and assign it the value 3
Dim num As Double
lstResults.Items.Add(num)

 num = 3
End Sub

Page 33 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Example 5.
(This item is displayed on pages 158 - 159 in the print version)

[Run, and then click the button. The following is displayed in the list box.]

0
0

The following program illustrates the fact that variables are local to the part of the program
in which they reside. The variable x in the event procedure and the variable x in the Sub
procedure are treated as different variables. Visual Basic handles them as if their names
were separate, such as xbtnDisplay_Click and xTrivial. Also, each time the Sub procedure
is called, the value of variable x inside the Sub procedure is reset to 0.

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Demonstrate the local nature of variables
Dim x As Double = 2
lstResults.Items.Clear()
lstResults.Items.Add(x)
Trivial()
lstResults.Items.Add(x)
Trivial()
lstResults.Items.Add(x)

End Sub
Sub Trivial()
'Do something trivial
Dim x As Double
lstResults.Items.Add(x)
x = 3
lstResults.Items.Add(x)

End Sub

[Run, and then click the button. The following is displayed in the list box.]

[Page 159]

2
0
3
2
0
3
2

Page 34 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Class-Level Variables

Visual Basic provides a way to make a variable visible to every procedure in a form's code without
being passed. Such a variable is called a class-level variable. The Dim statement for a class-level
variable can be placed anywhere between the statements Public Class formName and End Class,
provided that the Dim statement is not inside a procedure. Normally, we place the Dim statement just
after the Public Class formName statement (We refer to this region as the Declarations section of the
Code window.) A class-level variable is visible to every procedure. When a class-level variable has its
value changed by a procedure, the value persists even after the procedure has finished executing. We say
that such a variable has class-level scope. Variables declared inside a procedure are said to have local
scope.

In general, the scope of a variable is the portion of the program that can refer to it. Class-level scope also
is referred to as module-level scope, and local scope also is referred to as procedure-level scope. If a
procedure declares a local variable with the same name as a class-level variable, then the name refers to
the local variable for code inside the procedure.

Example 6.
(This item is displayed on pages 159 - 160 in the print version)

The following program contains the class-level variables num1 and num2. Their Dim
statement does not appear inside a procedure. It appears immediately following the
statement Public Class frmAdd.

Dim num1, num2 As Double 'Class-level variables
Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Display the sum of two numbers

 num1 = 2
 num2 = 3
lstResults.Items.Clear()

 AddAndIncrement()
 lstResults.Items.Add("")
 lstResults.Items.Add("num1 = " & num1)
 lstResults.Items.Add("num2 = " & num2)
End Sub
Sub AddAndIncrement()
 'Display numbers and their sum
 lstResults.Items.Add("The sum of " & num1 & " and " & _
 num2 & " is " & (num1 + num2) & ".")
 num1 += 1 'Add 1 to the value of num1
 num2 += 1 'Add 1 to the value of num2
End Sub

[Page 160]

[Run, and click the button. The following is displayed in the list box.]

Page 35 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

In the preceding example, we had to click a button to assign values to the class-level variables. In some
situations, we want to assign a value immediately to a class-level variable, without requiring the user to
perform some specific action. This can be accomplished by declaring each class-level variable with a
statement of the type

Dim variableName As varType = value

Example 7.

Debugging

Programs with Sub procedures are easier to debug. Each Sub procedure can be checked individually
before being placed into the program.

In Appendix D, the section "Stepping through a Program Containing a General Procedure: Chapter 4"
uses the Visual Basic debugger to trace the flow through a program and observe the interplay between
arguments and parameters.

Practice Problems 4.2

The sum of 2 and 3 is 5.
num1 = 3
num2 = 4

The following program assigns a value to a class-level variable as soon as it is created:

Dim pi As Double = 3.14159
Private Sub btnCompute_Click(...) Handles btnCompute.Click
'Display the area of a circle of radius 5

 txtArea.Text = "The area of a circle of radius 5 is " & (pi * 5 * 5)
End Sub

[Run, and then click the button. The following is displayed in the text box.]

The area of a circle of radius 5 is 78.53975

1. What does the following code display in the list box when the button is clicked?

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

Page 36 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Exercises 4.2

In Exercises 1 through 18, determine the output displayed when the button is clicked.

Dim b As Integer = 1, c As Integer = 2
Rhyme()
lstOutput.Items.Add(b & " " & c)

End Sub
Sub Rhyme()
Dim b, c As Integer
lstOutput.Items.Add(b & " " & c & " buckle my shoe.")
b = 3

End Sub

[Page 161]

2. Determine the output displayed in the list box when the button is clicked.

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
 Dim amt1 As Integer = 1, amt2 As Integer = 2
 lstOutput.Items.Add(amt1 & " "& amt2)
 Swap(amt1, amt2)
 lstOutput.Items.Add(amt1 & " "& amt2)
End Sub
Sub Swap(ByRef num1 As Integer, ByRef num2 As Integer)
 'Interchange the values of num1 and num2
 Dim temp As Integer
 temp = num1
 num1 = num2
 num2 = temp
 lstOutput.Items.Add(num1 & " "& num2)
End Sub

3. In Problem 2, change the Sub statement to

Sub Swap(ByRef num1 As Integer, ByVal num2 As Integer)

and determine the output.

4. In Problem 2, change the calling statement to

Swap((amt1), (amt2))

and determine the output.

Page 37 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

1. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
 Dim num As Double = 7
 AddTwo(num)
 txtOutput.Text = CStr(num)
 End Sub
 Sub AddTwo(ByRef num As Double)
 'Add 2 to the value of num
 num += 2
 End Sub

2. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
 Dim term As String
 term = "Fall"
 Plural(term)
 txtOutput.Text = term
End Sub

[Page 162]
Sub Plural(ByRef term As String)
 'Concatenate the letter "s"to the value of term
 term &= "s"
End Sub

3. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim dance As String
dance = "Can "
Twice(dance)
txtOutput.Text = dance

End Sub

Sub Twice(ByRef dance As String)
'Concatenate the value of dance to itself
dance &= dance

End Sub

4. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim a As Integer = 1, b As Integer = 3
lstOutput.Items.Add(a & " "& b)
Combine(a, b)
lstOutput.Items.Add(a & " "& b)
Combine((a), b)
lstOutput.Items.Add(a & " "& b)

End Sub

Sub Combine(ByRef x As Integer, ByVal y As Integer)
x = y - x
y = x + y
lstOutput.Items.Add(x & " "& y)

End Sub

Page 38 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

5. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim a As Double = 5
Square(a)
txtOutput.Text = CStr(a)

End Sub

Sub Square(ByRef num As Double)
num = num * num

End Sub

6. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim state As String = "NEBRASKA"
Abbreviate(state)
txtOutput.Text = state

End Sub

Sub Abbreviate(ByRef a As String)
a = a.SubString(0, 2)

End Sub

[Page 163]

7. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word As String = " "
GetWord(word)
txtOutput.Text = "Less is "& word & "."

End Sub

Sub GetWord(ByRef w As String)
w = "more"

End Sub

8. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim hourlyWage, annualWage As Double
hourlyWage = 10
CalcAnnualWage(hourlyWage, annualWage)
txtOutput.Text = "Approximate Annual Wage: "& _

FormatCurrency(annualWage)
End Sub

Sub CalcAnnualWage(ByVal hWage As Double, ByRef aWage As Double)
aWage = 2000 * hWage

End Sub

Page 39 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

9. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim name As String = "", yob As Integer
GetVita(name, yob)
txtOutput.Text = name & " was born in the year "& yob

End Sub

Sub GetVita(ByRef name As String, ByRef yob As Integer)
name = "Gabriel"
yob = 1980 'Year of birth

End Sub

10. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word1, word2 As String
word1 = "fail"
word2 = "plan"
txtOutput.Text = "If you "
Sentence(word1, word2)
txtOutput.Text &= ","
Exchange(word1, word2)
txtOutput.Text &= " then you "
Sentence(word1, word2)
txtOutput.Text &= "."

End Sub

Sub Exchange(ByRef word1 As String, ByRef word2 As String)
Dim temp As String
temp = word1
word1 = word2
word2 = temp

End Sub

[Page 164]
Sub Sentence(ByVal word1 As String, ByVal word2 As String)
txtOutput.Text &= word1 & " to "& word2

End Sub

11. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim state As String = "Ohio "
Team()

End Sub

Sub Team()
Dim state As String
txtOutput.Text = state
vtxtOutput.Text &= "Buckeyes"

End Sub

12. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim a As Double = 5

Page 40 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Multiply(7)
lstOutput.Items.Add(a * 7)

End Sub

Sub Multiply(ByRef num As Double)
Dim a As Double
a = 11
lstOutput.Items.Add(a * num)

End Sub

13. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim a As Double = 5
Multiply(7)

End Sub

Sub Multiply(ByVal num As Double)
Dim a As Double
txtOutput.Text = CStr(a * num)

End Sub

14. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim name, n As String
name = "Ray"
Hello(name)
lstOutput.Items.Add(n & " and "& name)

End Sub

Sub Hello(ByRef name As String)
Dim n As String
n = name
name = "Bob"
lstOutput.Items.Add("Hello "& n & " and "& name)

End Sub

[Page 165]

15. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim num As Double = 1
Amount(num)
Amount(num)

End Sub

Sub Amount(ByVal num As Double)
Dim total As Double
total += num 'Add the value of num to the value of total
lstOutput.Items.Add(total)

End Sub

Page 41 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

16. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim river As String
river = "Wabash"
Another()
lstOutput.Items.Add(river & " River")
Another()

End Sub

Sub Another()
Dim river As String
lstOutput.Items.Add(river & " River")
river = "Yukon"

End Sub

17. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim n As Integer = 4, word As String = "overwhelming"
lstOutput.Items.Add(n & " "& word)
Crop(n, word)
lstOutput.Items.Add(n & " "& word)
Crop(n, (word))
lstOutput.Items.Add(n & " "& word)

End Sub

Sub Crop(ByVal n As Integer, ByRef word As String)
n = word.Length - n
word = word.Substring(word.Length - n)
lstOutput.Items.Add(n & " "& word)

End Sub

18. Private Sub btnCompute_Click(...) Handles btnCompute.Click
Dim tax, price, total As Double
tax = 0.05
GetPrice("bicycle", price)
ProcessItem(price, tax, total)
DisplayResult(total)

End Sub

Sub DisplayResult(ByVal total As Double)
txtOutput.Text = "With tax, price is "& FormatCurrency(total)

End Sub

[Page 166]
Sub GetPrice(ByVal item As String, ByRef price As Double)
Dim strVar As String
strVar = InputBox("What is the price of a "& item & "?")
price = CDbl(strVar)

End Sub

Sub ProcessItem(ByVal price As Double, ByVal tax As Double, _
ByRef total As Double)

total = (1 + tax) * price
End Sub

Page 42 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

In Exercises 19 and 20, find the errors.

In Exercises 21 through 24, rewrite the program so input, processing, and output are each performed by
calls to Sub procedures.

(Assume that the cost of the bicycle is $200.)

19. Private Sub btnCompute_Click(...) Handles btnCompute.Click
Dim a, b, c As Double
a = 1
b = 2
Sum(a, b, c)
txtOutput.Text = "The sum is "& c

End Sub

Sub Sum(ByVal x As Double, ByVal y As Double)
Dim c As Double
c = x + y

End Sub

20. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim ano As String = ""
GetYear(ano)
txtOutput.Text = ano

End Sub

Sub GetYear(ByRef yr As Double)
yr = 2006

End Sub

21. Private Sub btnCompute_Click(...) Handles btnCompute.Click
'Calculate sales tax
Dim price, tax, cost As Double
lstOutput.Items.Clear()
price = CDbl(InputBox("Enter the price of the item:"))
tax = .05 * price
cost = price + tax
lstOutput.Items.Add("Price: "& price)
lstOutput.Items.Add("Tax: "& tax)
lstOutput.Items.Add("-------")
lstOutput.Items.Add("Cost: "& cost)

End Sub

Page 43 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

In Exercises 25 and 26, write a line of code to carry out the task. Specify where in the program the line
of code would occur.

In Exercises 27 through 32, write a program to perform the stated task. The input, processing, and output
should be performed by calls to Sub procedures.

[Page 167]

22. Private Sub btnDisplay_Click(...) Handles bnDisplay.Click
'Letter of acceptance
Dim name, firstName As String, n As Integer
lstOutput.Items.Clear()
name = InputBox("What is your full name?")
n = name.IndexOf(" ")
firstName = name.Substring(0, n)
lstOutput.Items.Add("Dear "& firstName & ",")
lstOutput.Items.Add("")
lstOutput.Items.Add("We are proud to accept you to Yale.")

End Sub

23. Private Sub btnDisplay_Click(...) Handles bnDisplay.Click
'Determine the area of a rectangle
Dim length, width, area As Double
length = CDbl(txtLength.Text)
width = CDbl(txtWidth.Text)
area = length * width
txtOutput.Text = "The area of the rectangle is "& area

End Sub

24. Private Sub btnCompute_Click(...) Handles btnCompute.Click
'Convert feet and inches to centimeters
Dim str As String
Dim feet, inches, totalInches, centimeters As Double
str = "Give the length in feet and inches. "
feet = CDbl(InputBox(str & "Enter the number of feet."))
inches = CDbl(InputBox(str & "Enter the number of inches. "))
totalInches = 12 * feet + inches
centimeters = 2.54 * totalInches
txtOutput.Text = "The length in centimeters is "& centimeters

End Sub

25. Declare the variable str as a string variable visible to all parts of the program.

26. Declare the variable str as a string variable visible only to the btnTest_Click event
procedure.

Page 44 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

27. Request a person's first name and last name as input and display the corresponding
initials.

28. Request the amount of a restaurant bill as input and display the amount, the tip (15
percent), and the total amount.

29. Request the cost and selling price of an item of merchandise as input and display the
percentage markup. Test the program with a cost of $4 and a selling price of $6. Note:
The percentage markup is (sellingprice cost) / cost.

[Page 168]

30. Read the number of students in public colleges (12.1 million) and private colleges (3.7
million) from a file, and display the percentage of college students attending public
colleges.

31. Read a baseball player's name (Sheffield), times at bat (557), and hits (184) from a file
and display his name and batting average. Note: Batting average is calculated as (hits)/
(times at bat).

32. Request three numbers as input, and then calculate and display the average of the three
numbers.

33. The Hat Rack is considering locating its new branch store in one of three malls. The
following file gives the monthly rent per square foot and the total square feet available at
each of the three locations. Write a program to display a table exhibiting this information
along with the total monthly rent for each mall.

(Assume the nine lines of the file MALLS.TXT contain the following data: Green Mall,
6.50, 583, Red Mall, 7.25, 426, Blue Mall, 5.00, 823.)

34. Write a program that uses the data in the file CHARGES.TXT to display the end-of-
month credit-card balances of three people. (Each set of four lines gives a person's name,
beginning balance, purchases during month, and payment for the month.) The end-of-
month balance is calculated as [finance charges] + [beginning-of-month balance] +
[purchases] - [payment], where the finance charge is 1.5 percent of the beginning-of-
month balance.

(Assume the 12 lines of the file CHARGES.TXT contain the following data: John
Adams, 125.00, 60.00, 110.00, Sue Jones, 0, 117.25, 117.25, John Smith, 350.00, 200.50,
300.00.)

35. Write a program to produce a sales receipt. Each time the user clicks on a button, an item
and its price should be read from a pair of text boxes and displayed in a list box. Use a
class-level variable to track the sum of the prices. When the user clicks on a second
button (after all the entries have been made), the program should display the sum of the
prices, the sales tax (5 percent of total), and the total amount to be paid. Figure 4.5 shows
a sample output of the program.

Page 45 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Figure 4.5. Sample output for Exercise 35.

[Page 169]

Solutions to Practice Problems 4.2

1. 0 0 buckle my shoe.
1 2

This program illustrates the local nature of the variables in a Sub procedure. Notice that
the variables b and c appearing in the Sub procedure have no relationship whatsoever to
the variables of the same name in the event procedure. In a certain sense, the variables
inside the Sub procedure can be thought of as having alternate names, such as bRhyme
and cRhyme.

2. 1 2
2 1
2 1

Both variables are passed by reference and so have their values changed by the Sub
procedure.

3. 1 2
2 1
2 2

Here amt1 is passed by reference and amt2 is passed by value. Therefore, only amt1 has
its value changed by the Sub procedure.

4. 1 2
2 1
1 2

Both variables are passed by value, so their values are not changed by the Sub procedure.

Page 46 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 169 (continued)]

4.3. Function Procedures

Visual Basic has many built-in functions. In one respect, functions are like miniature programs. They
use input, they process the input, and they have output. Some functions we encountered earlier are listed
in Table 4.2.

Although the input can involve several values, the output always consists of a single value. The items
inside the parentheses can be literals (as in Table 4.2), variables, or expressions.

In addition to using built-in functions, we can define functions of our own. These new functions, called
Function procedures or user-defined functions, are defined in much the same way as Sub procedures and
are used in the same way as built-in functions. Like built-in functions, Function procedures have a single
output that can be of any data type. Function procedures can be used in expressions in exactly the same
way as built-in functions. Programs refer to them as if they were literals, variables, or expressions.
Function procedures are defined by function blocks of the form

[Page 170]

Function FunctionName(ByVal var1 As Type1, _
 ByVal var2 As Type2, ...) As DataType
statement(s)
Return expression

End Function

The variables appearing in the top line are called parameters. Variables declared by statements inside the
function block have local scope. Function names should be suggestive of the role performed and must
conform to the rules for naming variables. The type DataType, which specifies the type of the output,
will be one of String, Integer, Double, and so on. In the preceding general code, the next-to-last line
specifies the output, which must be of type DataType. Like Sub procedures, Function procedures are
typed directly into the Code window. (The last line, End Function, will appear automatically after the

Table 4.2. Some Visual Basic built-in functions.

Function Example Input Ouput

Int Int(2.6) is 2 number number

Chr Chr(65) is "A" number string

Asc Asc("Apple") is 65 string number

FormatNumber FormatNumber(12345.628,
1) is 12,345.6

number, number string

Page 47 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

first line is entered into the Code window.) A variable passed to a Function procedure is normally passed
by value. It can also be passed by reference and thereby possibly have its value changed by the Function
procedure. However, passing a variable by reference violates good design principles, since a function is
intended to only create a single result and not cause any other changes.

Two examples of Function procedures are as follows:

Function FtoC(ByVal t As Double) As Double
'Convert Fahrenheit temperature to Celsius
Return (5 / 9) * (t - 32)

End Function
Function FirstName(ByVal name As String) As String
'Extract the first name from a full name
Dim firstSpace As Integer
firstSpace = name.IndexOf(" ")
Return name.Substring(0, firstSpace)

End Function

The value of each of the preceding functions is assigned by a statement of the form Return expression.
The variables t and name appearing in the preceding functions are parameters. They can be replaced
with any variable of the same type without affecting the function definition. For instance, the function
FtoC could have been defined as

Function FtoC(ByVal temp As Double) As Double
 'Convert Fahrenheit temperature to Celsius
 Return (5 / 9) * (temp - 32)
End Function

[Page 171]

Example 1.

The following program uses the function FtoC.

Object Property Setting

Page 48 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Example 2.
(This item is displayed on pages 171 - 172 in the print version)

Private Sub btnConvert_Click(...) Handles btnConvert.Click
Dim fahrenheitTemp, celsiusTemp As Double

 fahrenheitTemp = CDbl(txtTempF.Text)
 celsiusTemp = FtoC(fahrenheitTemp)
 txtTempC.Text = CStr(celsiusTemp)
'Note: The above four lines can be replaced with the single line

 'txtTempC.Text = CStr(FtoC(CDbl(txtTempF.Text)))
End Sub
Function FtoC(ByVal t As Double) As Double
'Convert Fahrenheit temperature to Celsius
Return (5 / 9) * (t - 32)

End Function

[Run, type 212 into the text box, and then click the button.]

frmConvert Text Convert
Fahrenheit to
Celsius

lblTempF Text Temperature
(Fahrenheit)

txtTempF

btnConvert Text Convert to Celsius

lblTempC Text Temperature
(Celsius)

txtTempC ReadOnly True

The following program uses the function FirstName.

Page 49 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

User-Defined Functions Having Several Parameters

The input to a user-defined function can consist of one or more values. Two examples of functions with
several parameters follow. One-letter variable names have been used so the mathematical formulas will
look familiar and be readable. Because the names are not descriptive, the meanings of these variables are

[Page 172]

Private Sub btnDetermine_Click(...) Handles btnDetermine.Click
'Determine a person's first name
Dim name As String

 name = txtFullName.Text
 txtFirstname.Text = FirstName(name)
End Sub
Function FirstName(ByVal name As String) As String
'Extract the first name from a full name
Dim firstSpace As Integer

 firstSpace = name.IndexOf(" ")
Return name.Substring(0, firstSpace)

End Function

[Run, type Thomas Woodrow Wilson into the text box, and then click the button.]

Object Property Setting

frmFirstName Text Extract First Name

lblName Text Name

txtFullName

btnDetermine Text Determine First Name

txtFirstName ReadOnly True

Page 50 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

carefully spelled out in comment statements.

Function Hypotenuse(ByVal a As Double, ByVal b As Double) As Double
'Calculate the hypotenuse of a right triangle
'having sides of lengths a and b
Return Math.Sqrt(a ^ 2 + b ^ 2)

End Function
Function FutureValue(ByVal p As Double, ByVal r As Double, _

ByVal c As Double, ByVal n As Double) As Double
'Find the future value of a bank savings account
'p principal, the amount deposited
'r annual rate of interest
'c number of times interest is compounded per year
'n number of years
Dim i As Double 'interest rate per period
Dim m As Double 'total number of times interest is compounded
i = r / c
m = c * n
Return p * ((1 + i) ^ m)

End Function

[Page 173]

Example 3.

The following program uses the Hypotenuse function.

Object Property Setting

frmPythagoras Text Right Triangle

lblSideOne AutoSize False

Text Length of one side

txtSideOne

lblSideTwo AutoSize False

Page 51 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Example 4.
(This item is displayed on pages 173 - 175 in the print version)

Private Sub btnCalculate_Click(...) Handles btnCalculate.Click
'Calculate the length of the hypotenuse of a right triangle
Dim a, b As Double

 a = CDbl(txtSideOne.Text)
 b = CDbl(txtSideTwo.Text)
 txtHyp.Text = CStr(Hypotenuse(a, b))
End Sub
Function Hypotenuse(ByVal a As Double, ByVal b As Double) As Double
'Calculate the hypotenuse of a right triangle

 'having sides of lengths a and b
Return Math.Sqrt(a ^ 2 + b ^ 2)

End Function

[Run, type 3 and 4 into the text boxes, and then click the button.]

Text Length of other side

txtSideTwo

btnCalculate Text Calculate Hypotenuse

lblHyp AutoSize False

Text Length of Hypotenuse

txtHyp ReadOnly True

The following program uses the future value function. With the responses shown, the
program computes the balance in a savings account when $100 is deposited for five years at
4% interest compounded quarterly. Interest is earned four times per year at the rate of 1%
per interest period. There will be 4 * 5, or 20, interest periods.

Page 52 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 174]

Private Sub btnCompute_Click(...) Handles btnCompute.Click
'Find the future value of a bank deposit
Dim p As Double 'principal, the amount deposited
Dim r As Double 'annual rate of interest

Object Property Setting

frmBank Text Bank Deposit

lblAmount Text Amount of bank
deposit:

txtAmount

lblRate Text Annual rate of interest:

txtRate

lblNumComp AutoSize False

Text Number of times
interest

is compounded per
year:

txtNumComp

lblNumYrs Text Number of years:

txtNumYrs

btnCompute Text Compute Balance

lblBalance Text Balance:

txtBalance ReadOnly True

Page 53 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Dim c As Double 'number of times interest is compounded per year
Dim n As Double 'number of years

 InputData(p, r, c, n)
 DisplayBalance(p, r, c, n)
End Sub
Sub InputData(ByRef p As Double, ByRef r As Double, _

ByRef c As Double, ByRef n As Double)
'Get the four values from the text boxes

 p = CDbl(txtAmount.Text)
 r = CDbl(txtRate.Text)
 c = CDbl(txtNumComp.Text)
 n = CDbl(txtNumYrs.Text)
End Sub

Sub DisplayBalance(ByVal p As Double, ByVal r As Double, _
ByVal c As Double, ByVal n As Double)

'Display the balance in a text box
Dim balance As Double

 balance = FutureValue(p, r, c, n)
 txtbalance.Text = FormatCurrency(balance)
End Sub
Function FutureValue(ByVal p As Double, ByVal r As Double, _

ByVal c As Double, ByVal n As Double) As Double
'Find the future value of a bank savings account
'p principal, the amount deposited
'r annual rate of interest
'c number of times interest is compounded per year
'n number of years

[Page 175]
Dim i As Double 'interest rate per period
Dim m As Double 'total number of times interest is compounded

 i = r / c
 m = c * n
Return p * ((1 + i) ^ m)

End Function

[Run, type 100, .04, 4, and 5 into the text boxes, then click the button.]

Page 54 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

User-Defined Functions Having No Parameters

Function procedures, like Sub procedures, need not have any parameters.

Example 5.

The saying "Less is more." is displayed in the text box.

Comparing Function Procedures with Sub Procedures

Function procedures differ from Sub procedures in the way they are accessed. Sub procedures are
invoked with call statements, whereas functions are invoked by placing them where you would
otherwise expect to find a literal, variable, or expression. Unlike a Function procedure, a Sub procedure
can't be used in an expression.

Function procedures can perform the same tasks as Sub procedures. For instance, they can request input
and display text. However, Function procedures are primarily used to calculate a single value. Normally,
Sub procedures are used to carry out other tasks.

[Page 176]

The Sub procedures considered in this book terminate only when End Sub is reached. On the other hand,
Function procedures terminate as soon as the first Return statement is executed. For instance, if a Return
statement is followed by a sequence of statements and the Return statement is executed, then the
sequence of statements will not be executed.

Collapsing a Procedure with a Region Directive

A group of procedures or class-level variables can be collapsed behind a captioned rectangle. This task
is carried out with a so-called Region directive. To specify a region, precede the code to be collapsed
with a line of the form

The following program uses a parameterless function.

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Request and display a saying

 txtBox.Text = Saying()
End Sub
Function Saying() As String
'Retrieve a saying from the user
Return InputBox("What is your favorite saying?")

End Function

[Run, click the button, and then type "Less is more." into the message box.]

Page 55 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

#Region "Text to be displayed in the rectangle."

and follow the code with the line

#End Region

A tiny box holding a minus sign will appear to the left of the #Region line. To collapse the code, click
on the minus sign. The code will be hidden behind a rectangle captioned with the text you specified and
the minus sign will be replaced by a plus sign. Click on the plus sign to expand the region. The Region
directive is used to make a program more readable or to create an outline for a program. In Figure 4.6(a),
Region directives have been specified for each procedure in Example 5. In Figure 4.6(b), these two
regions have been collapsed.

Figure 4.6(a). Region directives.

[Page 177]

Figure 4.6(b). Collapsed regions.

Page 56 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Practice Problems 4.3

1. Suppose a program contains the lines

Dim n As Double, x As String
lstOutput.Items.Add(Arc(n, x))

What types of inputs (numeric or string) and output does the function Arc have?

2. What is displayed in the text box when btnCompute is clicked?

Private Sub btnCompute_Click(...) Handles btnCompute.Click
'How many gallons of apple cider can we make?
Dim gallonsPerBushel, apples As Double
GetData(gallonsPerBushel, apples)
DisplayNumOfGallons(gallonsPerBushel, apples)

End Sub
Function Cider(ByVal g As Double, ByVal x As Double) As Double
Return g * x

End Function
Sub DisplayNumOfGallons(ByVal galPerBu As Double, _

ByVal apples As Double)
txtOutput.Text = "You can make "& Cider(galPerBu, apples) _

& " gallons of cider."
End Sub
Sub GetData(ByRef gallonsPerBushel As Double, _

ByRef apples As Double)
'gallonsPerBushel Number of gallons of cider one bushel
'of apples makes
'apples Number of bushels of apples available
gallonsPerBushel = 3
apples = 9

Page 57 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 178]

Exercises 4.3

In Exercises 1 through 10, determine the output displayed when the button is clicked.

End Sub

1. Private Sub btnConvert_Click(...) Handles btnConvert.Click
'Convert Celsius to Fahrenheit
Dim temp As Double = 95
txtOutput.Text = CStr(CtoF(temp))

End Sub

Function CtoF(ByVal t As Double) As Double
Return (9 / 5) * t + 32

End Function

2. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim acres As Double 'Number of acres in a parking lot
acres = 5
txtOutput.Text = "You can park about "& Cars(acres) & " cars."

End Sub

Function Cars(ByVal x As Double) As Double
'Number of cars that can be parked
Return 100 * x

End Function

3. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Rule of 72
Dim p As Double
p = CDbl(txtPopGr.Text) 'Population growth as a percent
txtOutput.Text = "The population will double in "& _

DoublingTime(p) & " years."
End Sub

Function DoublingTime(ByVal x As Double) As Double
'Estimate time required for a population to double
'at a growth rate of x percent
Return 72 / x

End Function

(Assume the text box txtPopGr contains the number 3.)

Page 58 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

4. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Calculate max. ht. of a ball thrown straight up in the air
Dim initVel, initHt As Double
initVel = CDbl(txtVel.Text) 'Initial velocity of ball
initHt = CDbl(txtHt.Text) 'Initial height of ball
txtOutput.Text = CStr(MaximumHeight(initVel, initHt))

End Sub

[Page 179]
Function MaximumHeight(ByVal v As Double, ByVal h As Double) _

As Double
Return h + (v ^ 2 / 64)

End Function

(Assume the text boxes contain the values 96 and 256.)

5. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Compute volume of a cylinder
Dim r As Double = 1 'Radius
Dim h As Double = 2 'Height
DisplayVolume(r, h)
r = 3
h = 4
DisplayVolume(r, h)

End Sub

Function Area(ByVal r As Double) As Double
'Compute area of a circle of radius r
Return 3.14159 * r ^ 2

End Function

Sub DisplayVolume(ByVal r As Double, ByVal h As Double)
lstBox.Items.Add("Volume of cylinder having base area "& _

Area(r) & " and height "& h & " is "& (h * Area(r)))
End Sub

6. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Determine the day of the week from its number
Dim days As String, num As Integer
days = "SunMonTueWedThuFriSat"
num = CInt(InputBox("Enter the number of the day."))
txtOutput.Text = "The day is "& DayOfWk(days, num) & "."

End Sub

Function DayOfWk(ByVal x As String, ByVal n As Integer) As String
'x String containing 3-letter abbreviations of days
'n The number of the day
Dim position As Integer
position = 3 * n - 3
Return x.Substring(position, 3)

End Function

Page 59 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

(Assume the response is 4.)

7. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Demonstrate local variables
Dim word As String = "Choo "
txtOutput.Text = TypeOfTrain()

End Sub

[Page 180]
Function TypeOfTrain() As String
'Concatenate the value of word with itself
Dim word As String
word &= word
Return word & "train"

End Function

8. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Triple a number
Dim num As Double = 5
lstOutput.Items.Add(Triple(num))
lstOutput.Items.Add(num)

End Sub

Function Triple(ByVal x As Double) As Double
Dim num As Double = 3
Return num * x

End Function

9. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word As String
word = "moral"
Negative(word)
word = "political"
Negative(word)

End Sub

Function AddA(ByVal word As String) As String
Return "a"& word
End Function

Sub Negative(ByVal word As String)
lstOutput.Items.Add(word & " has the negative "& AddA(word))

End Sub

10. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim city As String, pop, shrinks As Double
Dim sr As IO.StreamReader = IO.File.OpenText("DOCS.TXT")
city = sr.ReadLine

Page 60 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

pop = CDbl(sr.ReadLine)
shrinks = CDbl(sr.ReadLine)
DisplayData(city, pop, shrinks)
city = sr.ReadLine
pop = CDbl(sr.ReadLine)
shrinks = CDbl(sr.ReadLine)
sr.Close()
DisplayData(city, pop, shrinks)

End Sub

Sub DisplayData(ByVal city As String, ByVal pop As Double, _
ByVal shrinks As Double)

lstBox.Items.Add(city & " has "& ShrinkDensity(pop, shrinks) _
& " psychiatrists per 100,000 people.")

End Sub

[Page 181]
Function ShrinkDensity(ByVal pop As Double, _

ByVal shrinks As Double) As Double
Return Int(100000 * (shrinks / pop))

End Function

(Assume the six lines of the file DOCS.TXT contain the following data: Boston,
2824000, 8602, Denver, 1633000, 3217.)

In Exercises 11 and 12, identify the errors.

11. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
'Select a greeting
Dim answer As Integer
answer = CInt(InputBox("Enter 1 or 2."))
txtOutput.Text = CStr(Greeting(answer))

End Sub

Function Greeting(ByVal x As Integer) As Integer
Return "hellohi ya".Substring(5 * (x 1), 5)
End Function

12. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
Dim word As String
word = InputBox("What is your favorite word?")
txtOutput.Text = "When the word is written twice, " & _

Twice(word) & " letters are used."
End Sub

Function Twice(ByVal w As String) As Integer
'Compute twice the length of a string
Dim len As Integer
Return len = 2 * w.Length

End Function

Page 61 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

In Exercises 13 through 21, construct user-defined functions to carry out the primary task
(s) of the program.

13. To determine the number of square centimeters of tin needed to make a tin can, add the
square of the radius of the can to the product of the radius and height of the can, and then
multiply this sum by 6.283. Write a program that requests the radius and height of a tin
can in centimeters as input and displays the number of square centimeters required to
make the can.

14. According to Plato, a man should marry a woman whose age is half his age plus seven
years. Write a program that requests a man's age as input and gives the ideal age of his
wife.

15. The federal government developed the body mass index (BMI) to determine ideal
weights. Body mass index is calculated as 703 times the weight in pounds, divided by the
square of the height in inches, and then rounded to the nearest whole number. Write a
program that accepts a person's weight and height as input and gives the person's body
mass index. Note: A BMI of 19 to 25 corresponds to a healthy weight.

[Page 182]

16. In order for exercise to be beneficial to the cardiovascular system, the heart rate (number
of heart beats per minute) must exceed a value called the training heart rate, THR. A
person's THR can be calculated from his age and resting heart rate (pulse when first
awakening) as follows:

a. Calculate the maximum heart rate as 220 age.

b. Subtract the resting heart rate from the maximum heart rate.

c. Multiply the result in step (b) by 60%, and then add the resting heart rate.

Write a program to request a person's age and resting heart rate as input and display their
THR. (Test the program with an age of 20 and a resting heart rate of 70, and then
determine your training heart rate.)

17. The three ingredients for a serving of popcorn at a movie theater are popcorn, butter
substitute, and a bucket. Write a program that requests the cost of these three items and
the price of the serving as input and then displays the profit. (Test the program where
popcorn costs 5 cents, butter substitute costs 2 cents, the bucket costs 25 cents, and the
selling price is $5.)

18. Rewrite the population-density program from Example 4 of Section 4.1 using a function
to calculate the population density.

19. The original cost of airmail letters was 5 cents for the first ounce and 10 cents for each
additional ounce. Write a program to compute the cost of a letter whose weight is given
by the user in a text box. Use a function called Ceil that rounds noninteger numbers up to
the next integer. The function Ceil can be defined by Ceil(x) = Int(x).(Test the program

Page 62 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 183]

Solutions to Practice Problems 4.3

with the weights 4, 1, 2.5, and .5 ounces.)

20. Suppose a fixed amount of money is deposited at the beginning of each month into a
savings account paying 6% interest compounded monthly. After each deposit is made,
[new balance] = 1.005 * [previous balance one month ago] + [fixed amount]. Write a
program that requests the fixed amount of the deposits as input and displays the balance
after each of the first four deposits. A sample outcome when 800 is typed into the text
box for the amount deposited each month follows.

Month 1 800.00
Month 2 1,604.00
Month 3 2,412.02
Month 4 3,224.08

21. Write a program to request the name of a United States senator as input and display the
address and greeting for a letter to the senator. Assume the name has two parts, and use a
function to determine the senator's last name. A sample outcome when Robert Smith is
typed into the input dialog box requesting the senator's name follows.

The Honorable Robert Smith
United States Senate
Washington, DC 20001
Dear Senator Smith,

1. The first argument, n, takes a value of type Double and the second argument, x, takes a
String value; therefore, the input consists of a number and a string. From the two lines
shown here, there is no way to determine the type of the output. This can be determined
only by looking at the definition of the function.

2. You can make 27 gallons of cider In this program, the function was called by a
Sub procedure rather than by an event procedure.

[Page 183 (continued)]

Page 63 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

4.4. Modular Design

Top-Down Design

Full-featured software usually requires large programs. Writing the code for an event procedure in such
a Visual Basic program might pose a complicated problem. One method programmers use to make a
complicated problem more understandable is to divide it into smaller, less complex subproblems.
Repeatedly using a "divide-and-conquer" approach to break up a large problem into smaller
subproblems is called stepwise refinement. Stepwise refinement is part of a larger methodology of
writing programs known as top-down design. The term top-down refers to the fact that the more general
tasks occur near the top of the design and tasks representing their refinement occur below. Top-down
design and structured programming emerged as techniques to enhance programming productivity. Their
use leads to programs that are easier to read and maintain. They also produce programs containing fewer
initial errors, with these errors being easier to find and correct. When such programs are later modified,
there is a much smaller likelihood of introducing new errors.

The goal of top-down design is to break a problem into individual tasks, or modules, that can easily be
transcribed into pseudocode, flowcharts, or a program. First, a problem is restated as several simpler
problems depicted as modules. Any modules that remain too complex are broken down further. The
process of refining modules continues until the smallest modules can be coded directly. Each stage of
refinement adds a more complete specification of what tasks must be performed. The main idea in top-
down design is to go from the general to the specific. This process of dividing and organizing a problem
into tasks can be pictured using a hierarchy chart. When using top-down design, certain criteria should
be met:

1. The design should be easily readable and emphasize small module size.

2. Modules proceed from general to specific as you read down the chart.

3. The modules, as much as possible, should be single minded. That is, they should only perform a
single well-defined task.

4. Modules should be independent of each other as much as possible, and any relationships among
modules should be specified.

This process is illustrated with the following example.

[Page 184]

Example 1.
(This item is displayed on pages 184 - 185 in the print version)

The chart in Figure 4.7 is a hierarchy chart for a program that gives certain information
about a car loan. The inputs are the amount of the loan, the duration (in years), and the
interest rate. The output consists of the monthly payment and the amount of interest paid
during the first month. In the broadest sense, the program calls for obtaining the input,

Page 64 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Structured Programming

making calculations, and displaying the output. Figure 4.7 shows these tasks as the first row
of a hierarchy chart.

Figure 4.7. Beginning of a hierarchy chart for the car loan program.

Each of these tasks can be refined into more specific subtasks. (See Figure 4.8 for the final
hierarchy chart.) Most of the subtasks in the third row are straightforward and so do not
require further refinement. For instance, the first month's interest is computed by
multiplying the amount of the loan by one-twelfth of the annual rate of interest. The most
complicated subtask, the computation of the monthly payment, has been broken down
further. This task is carried out by applying a standard formula found in finance books;
however, the formula requires the number of payments.

Figure 4.8. Hierarchy chart for the car loan program.

[View full size image]

[Page 185]

It is clear from the hierarchy chart that the top modules manipulate the modules beneath
them. While the higher-level modules control the flow of the program, the lower-level
modules do the actual work. By designing the top modules first, specific processing
decisions can be delayed.

Page 65 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

A program is said to be structured if it meets modern standards of program design. Although there is no
formal definition of the term structured program, computer scientists are in uniform agreement that such
programs should have modular design and use only the three types of logical structures discussed in
Chapter 2: sequences, decisions, and loops.

Sequences: Statements are executed one after another.

Decisions: One of several blocks of program code is executed based on a test for some condition.

Loops (iteration): One or more statements are executed repeatedly as long as a specified condition is
true.

Chapters 5 and 6 are devoted to decisions and loops, respectively.

One major shortcoming of the earliest programming languages was their reliance on the GoTo
statement. This statement was used to branch (that is, jump) from one line of a program to another. It
was common for a program to be composed of a convoluted tangle of branchings that produced
confusing code referred to as spaghetti code. At the heart of structured programming is the assertion of
E. W. Dijkstra that GoTo statements should be eliminated entirely because they lead to complex and
confusing programs. Two Italians, C. Bohm and G. Jacopini, were able to prove that GoTo statements
are not needed and that any program can be written using only the three types of logic structures
discussed before.

Structured programming requires that all programs be written using sequences, decisions, and loops.
Nesting of such statements is allowed. All other logical constructs, such as GoTos, are not allowed. The
logic of a structured program can be pictured using a flowchart that flows smoothly from top to bottom
without unstructured branching (GoTos). The portion of a flowchart shown in Figure 4.9(a) (on the next
page) contains the equivalent of a GoTo statement and, therefore, is not structured. A correctly
structured version of the flowchart in which the logic flows from the top to the bottom appears in Figure
4.9(b).

Figure 4.9. Flowcharts illustrating the removal of a GoTo statement.
(This item is displayed on page 186 in the print version)

[View full size image]

Page 66 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Advantages of Structured Programming

The goal of structured programming is to create correct programs that are easy to write, understand, and
change. Let us now take a closer look at the way modular design, along with a limited number of logical
structures, contributes to attaining these goals.

1. Easy to write.

Modular design increases the programmer's productivity by allowing him or her to look at the big
picture first and focus on the details later. During the actual coding, the programmer works with a
manageable chunk of the program and does not have to think about an entire complex program.

[Page 186]

Several programmers can work on a single large program, each taking responsibility for a specific
module.

Studies have shown structured programs require significantly less time to write than standard
programs.

Often, procedures written for one program can be reused in other programs requiring the same
task. Not only is time saved in writing a program, but reliability is enhanced, because reused
procedures will already be tested and debugged. A procedure that can be used in many programs
is said to be reusable.

2. Easy to debug.

Because each procedure is specialized to perform just one task or several related tasks, a
procedure can be checked individually to determine its reliability. A dummy program, called a
driver, is set up to test the procedure. The driver contains the minimum definitions needed to call

Page 67 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

the procedure to be tested. For instance, if the procedure to be tested is a function, the driver
program assigns diverse values to the arguments and then examines the corresponding function
return values. The arguments should contain both typical and special-case values.

The program can be tested and debugged as it is being designed with a technique known as stub
programming. In this technique, the key event procedures and perhaps some of the smaller
procedures are coded first. Dummy procedures, or stubs, are written for the remaining procedures.
Initially, a stub procedure might consist of a message box to indicate that the procedure has been
called, and thereby confirm that the procedure was called at the right time. Later, a stub might
simply display values passed to it in order to confirm not only that the procedure was called, but
also that it received the correct values from the calling procedure. A stub also can assign new
values to one or more of its parameters to simulate either input or computation. This provides
greater control of the conditions being tested. The stub procedure is always simpler than the actual
procedure it represents. Although the stub program is only a skeleton of the final program, the
program's structure can still be debugged and tested. (The stub program consists of some coded
procedures and the stub procedures.)

[Page 187]

Old-fashioned unstructured programs consist of a sequence of instructions that are not grouped for
specific tasks. The logic of such a program is cluttered with details and therefore difficult to
follow. Needed tasks are easily left out and crucial details easily neglected. Tricky parts of the
program cannot be isolated and examined. Bugs are difficult to locate because they might be
present in any part of the program.

3. Easy to understand.

The interconnections of the procedures reveal the modular design of the program.

The meaningful procedure names, along with relevant comments, identify the tasks performed by
the modules.

The meaningful variable names help the programmer to recall the purpose of each variable.

4. Easy to change.

Because a structured program is self-documenting, it can easily be deciphered by another
programmer.

Modifying a structured program often amounts to inserting or altering a few procedures rather
than revising an entire complex program. The programmer does not even have to look at most of
the program.

Object-Oriented Programming

An object is an encapsulation of data and code that operates on the data. Like controls, objects have
properties, respond to methods, and raise events. The most effective type of programming for complex
problems is called object-oriented design. An object-oriented program can be viewed as a collection of
cooperating objects. Most modern programmers use a blend of traditional structured programming along

Page 68 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

with object-oriented design.

Visual Basic.NET was the first version of Visual Basic that was truly object-oriented; in fact, every
element such as a control or a String is actually an object. This book illustrates the building blocks of
Visual Basic in the initial chapters and then puts them together using object-oriented techniques in
Chapter 11. Throughout the book, an object-oriented approach is taken whenever feasible.

[Page 188]

A Relevant Quote

We end this section with a few paragraphs from Dirk Gently's Holistic Detective Agency, by Douglas
Adams, Pocketbooks, 1987:

"What really is the point of trying to teach anything to anybody?"

This question seemed to provoke a murmur of sympathetic approval from up and down the
table.

Richard continued, "What I mean is that if you really want to understand something, the
best way is to try and explain it to someone else. That forces you to sort it out in your own
mind. And the more slow and dim-witted your pupil, the more you have to break things
down into more and more simple ideas. And that's really the essence of programming. By
the time you've sorted out a complicated idea into little steps that even a stupid machine can
deal with, you've certainly learned something about it yourself. The teacher usually learns
more than the pupil. Isn't that true?"

[Page 188 (continued)]

Chapter 4 Summary

1. A general procedure is a portion of a program that is accessed by event procedures or other
general procedures. The two types of general procedures are Sub procedures and Function
procedures.

2. Sub procedures are defined in blocks beginning with Sub statements and ending with End Sub
statements. A Sub procedure is accessed (called) by a statement consisting of the name of the
procedure.

3. Function procedures are defined in blocks beginning with Function statements and ending with
End Function statements. A function is invoked by a reference in an expression and returns a
value.

4. In any procedure, the arguments appearing in the calling statement must match the parameters of
the Sub or Function statement in number, type, and order. They need not match in name.

Page 69 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

5. A variable declared in the Declarations section of the Code window is class-level. Such a variable
is available to every procedure in the form's code and retains its value from one procedure
invocation to the next.

6. Variables declared with a Dim statement inside a procedure are local to the procedure. The values
of these variables are reinitialized each time the procedure is called. A variable with the same
name appearing in another part of the program is treated as a different variable.

7. Structured programming uses modular design to refine large problems into smaller subproblems.
Programs are coded using the three logical structures of sequences, decisions, and loops.

[Page 188 (continued)]

Chapter 4 Programming Projects

1. The numbers of calories per gram of carbohydrate, fat, and protein are 4, 9, and 4, respectively.
Write a program that requests the nutritional content of a serving of food and displays the number
of calories in the serving. The input and output should be handled by Sub procedures and the
calories computed by a function. A sample run for a typical breakfast cereal is shown in Figure
4.10.

[Page 189]

Figure 4.10. Sample run for Programming Project 1.

2. Annually, 1.7 billion dollars worth of toothpaste are sold each year in the United States. Table 4.3
gives the market share for the four top brands. Write a program that displays the annual sales (in
millions of dollars) for each of the top four. The input and output should be handled by Sub
procedures and the annual sales calculated by a Function procedure.

Table 4.3. 2001 market shares of the top-selling toothpaste brands.

Page 70 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Source: The World Almanac and Book of Facts 2002.

3. Table 4.4 gives the research and development budgets (in billions of dollars) for four departments
of the federal government for the years 2004 and 2005. Write a program that displays the
percentage change in the budget for each department. Sub procedures should be used for input and
output, and the percentage change should be computed with a Function procedure. Note: The
percentage change is ([2005 budget] [2004 budget])/[2004 budget].

Source: American Association for the Advancement of Science.

[Page 190]
4. A fast-food vendor sells pizza slices ($1.25), fries ($1.00), and soft drinks ($.75). Write a program

to compute a customer's bill. The program should request the quantity of each item ordered in a
Sub procedure, calculate the total cost with a Function procedure, and use a Sub procedure to
display an itemized bill. A sample output is shown in Figure 4.11.

Figure 4.11. Sample run for Programming Project 4.

Company Market Share

Crest 19.4%

Colgate 17.2%

Aquafresh 8.0%

Colgate Total 6.6%

Table 4.4. Research and development budget for several departments.

Department 2004 Budget 2005 Budget

Defense 65.6 70.3

Health and Human Services 28.5 29.1

NASA 10.9 11.1

Homeland Security 1.0 1.2

Page 71 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

5. Write a program to generate a business travel expense attachment for an income-tax return. The
program should request as input the name of the organization visited, the date and location of the
visit, and the expenses for meals and entertainment, airplane fare, lodging, and taxi fares. (Only
50% of the expenses for meals and entertainment are deductible.) A possible form layout and run
are shown in Figures 4.12 and 4.13, respectively. The output is displayed in a list box that
becomes visible when the button is clicked. Sub procedures should be used for the input and
output.

[Page 191]

Figure 4.12. Form with sample data for Programming Project 5.

Figure 4.13. Output in list box for sample run of Programming Project 5.

Page 72 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

[Page 192]
6. A furniture manufacturer makes two types of furniturechairs and sofas. The file

PRICE&TAXDATA.TXT contains three numbers giving the cost per chair, cost per sofa, and
sales tax rate. Write a program to create an invoice form for an order. See Figure 4.14. After the
data on the left side of Figure 4.14 are entered, you can display an invoice in a list box by pressing
the Process Order button. You can press the Clear Order Form button to clear all text boxes and
the list box, and you can press the Quit button to exit the program. The invoice number consists of
the capitalized first two letters of the customer's last name, followed by the last four digits of the
zip code. The customer name is input with the last name first, followed by a comma, a space, and
the first name. However, the name is displayed in the invoice in the proper order. The generation
of the invoice number and the reorder of the first and last names should be carried out in Function
procedures.

Figure 4.14. Sample run for Programming Project 6.

Page 73 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

Page 74 of 74Chapter 4. General Procedures

9/11/2013file:///C:/Users/CTESORIERO14/AppData/Local/Temp/~hhB96D.htm

